AC Circuit MCQs: 81 to 85

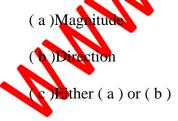
81 The average power loss in 50 µH pure inductance is

- (a)50 watt
- (b)500 watt
- (c)100 watt
- (d)Zero

Correct Answer (d): Zero

The power loss in the pure inductor is zero.

Julgo.c 82 The charge across capacitor is given by


- (a)IV
- (b)CV
- $(c)I^2R$
- $(d)V^2C$

Correct Answer (b): CV

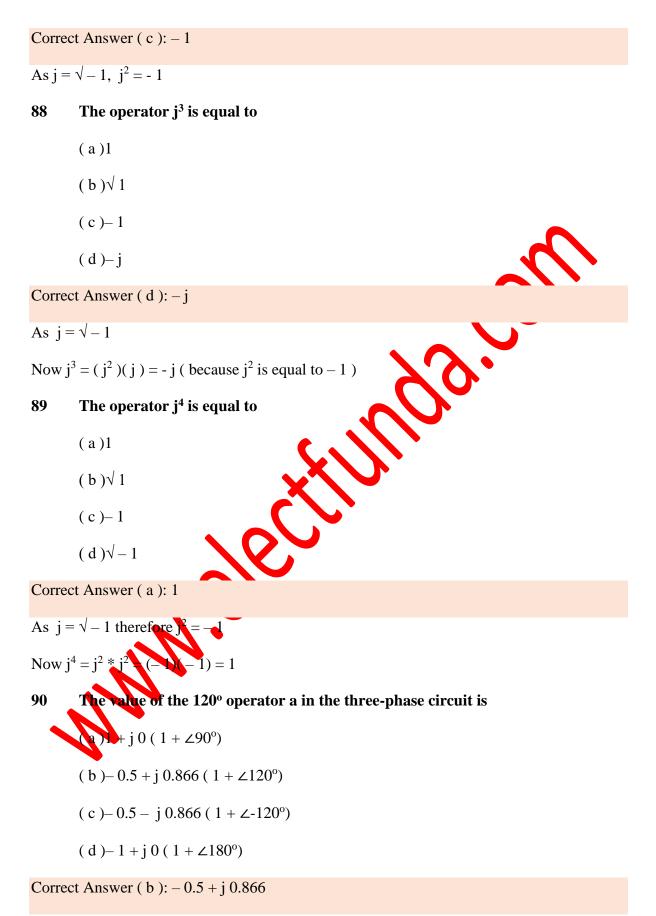
The charge across capacitor $Q/V^2 = Q$)

(As
$$Q = CV$$
 or $C = Q / V$

The vector quantity is represented by 83

(d)Both (a) and (b)

Correct Answer (d): Both (a) and (b)


The vector is represented by both magnitude and direction whereas scaler is represented by

magnitude only.

The scalar quantity is represented by 84

(a)Magnitude (b)Direction (c)Either(a) or(b) (d)Both(a) and(b)Correct Answer (a): Magnitude The scaler is represented by magnitude only. 85 The symbol j represents anticlockwise rotation of vector quantity through (a)0° (b)45° (c)90° (d)180° Correct Answer (c): 90° The vector j is represented by anti-clockwise rotation of vector through 90 degree. AC Circuit MCQs: 86 to 90 The value of operator 86 (a)1 (b)√1 Correct Answer (c): $\sqrt{-1}$ The operator j² is equal to 87 (a)1 (b)√1

- (c)– 1
- (d)– $\sqrt{1}$

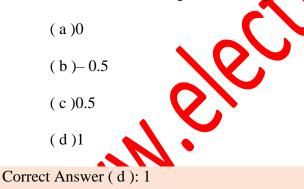
The value of operator a rotates in the anti-clockwise direction

 $a = 1 \angle 120^{\circ} = 1$ (Cos $120^{\circ} + j Sin 120^{\circ}) = -0.5 + j 0.866$

More information About Operator j

AC Circuit MCQs: 91 to 95

91 The value of the 120° operator a² in the three-phase circuit rotates in the clockwise direction by


(a)120°

- (b)240°
- (c)-120°
- (d)0°

Correct Answer (a): 120°

The value of operator a rotates in the anti-clockwise direction, a means operated rotates 240 degree in the anticlockwise direction or 120 degree in the clockwise direction.

92 The value of three phase 120° operator a

The operator $a^{1} = 1 \angle 360^{\circ} = 1$ (Cos $360^{\circ} + j \operatorname{Sin} 360^{\circ}$) = 1 + j 0 = 1

93 The value of three phase 120° operator a² is

- (a)-0.5 + j 0.866
- (b) 0.5 + j 0.866
- (c)-0.5 j 0.866
- (d)None of the above

Correct Answer (c): -0.5 - j 0.866

The operator $a^2 = 1 \angle 240^\circ = 1$ (Cos 240° + j Sin 240°) = -0.5 - j 0.866

94 Which of the following relation is true for the three-phase circuit operator a?

$$(a)a^{2} + a = -1$$

 $(b)a^{2} + a = 0$
 $(c)a^{2} + a = 1$
 $(d)a^{2} + a = a$

Correct Answer (a): $a^2 + a = -1$

We have to prove that $a^2 + a = -1$

Now

$$a^2 = 1 \ \angle 240^\circ = 1$$
 (Cos 240° + j Sin 240°) = $-0.5 - j \ 0.866$ and

- a = 1 ∠120° = 1 (Cos 120° + j Sin 120°) = -0.5 + j 0.866L.H.S. = a²+ a = (-0.5 - j 0.866) + (-0.5 + j 0.866) = -1.0
- 95 Which of the following relation is true for the three phase 120° operator?

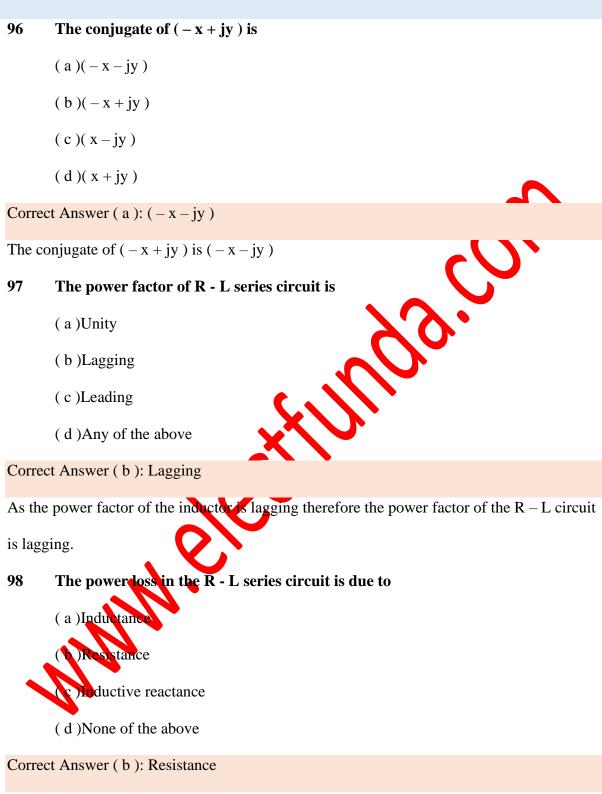
(a) $a^{3} + a^{2} + a = 1$ (b) $a^{3} + a^{2} + a = (-1)$ (c) $a^{3} + a^{2} + a = \sqrt{(-1)}$ (d) $a^{3} + a^{2} + a = 0$

Correct Answer (d): $a^{3}+a^{2}+a=0$

We have to prove that
$$a^3 + a^2 + a = 0$$

Now

$$a^3 = 1 \angle 360^\circ = 1$$
 (Cos $360^\circ + j \sin 360^\circ$) = $1 + j 0 = 1$


$$a^2 = 1 \angle 240^\circ = 1$$
 (Cos 240° + j Sin 240°) = $-0.5 - j 0.866$ and

$$a = 1 \angle 120^{\circ} = 1$$
 (Cos $120^{\circ} + j Sin 120^{\circ}$) = $-0.5 + j 0.866$

 $L.H.S = a^3 + a^2 + a$

 $= (1) + (-0.5 - j \ 0.866) + (-0.5 + j \ 0.866) = 0$

AC Circuit MCQs: 96 to 100

There is no power loss in the pure inductive circuit therefore power loss in the RL circuit is

only due to resistance of the circuit.

99 Which of the following is true for series RL circuit? $V_R = 3V$, $V_L = 4V$, then

(a)7.0 Volt (b)1.0 Volt (c).-1.0 Volt (d)5.0 Volt Correct Answer (d): 5.0 Volt The voltage vector in the RL Series OR RC Series circuit form Pythagorus therefore $V = \sqrt{V_R^2 + V_L^2} = \sqrt{(3)^2 + (4)^2} = \sqrt{25} = 5.0 V$ 100 The power consumption in the series RL circuit (a)VI (b)VI Cos Φ (c)VI Sin Φ (d)Zero

Correct Answer (b): VI Cos Φ

The power consumption in the RL or RC or RLC circuit is equal to active power.

 $P = VI \cos \Phi$

supply voltage V is

Download AC Circuit MCQs

Download AC Circuit MCQs PDF

You may also like to read these posts also:

<u>AC Circuit MCQs – 1</u>

AC Circuit MCQs – 2

AC Circuit MCQs – 3

Basic Electrical MCQs - 4

www.electunda.com