AC Circuit MCQs: 101 to 105

101 The inductive reactance is given by
(a)ωC
(b)πfL
(c)2πfL
(d)L / 2πf
Correct Answer (c): $2\pi fL$
The inductive reactance is given by $X_L = 2\pi fL$
102 The voltage vector current vector in the series RL circuit.
(a)Leads
(b)Lags
(c)Is in phase with
(d)Any of the above
Correct Answer (b): Lags
The series RL circuit is inductive circuit due to presence of inductance L so it is lagging
circuit.
103 The true power in the series R - L circuit is given by
(a)VI × Load factor
(b)VI \times Power factor
(c)VI×Form factor
(d)None of the above
Correct Answer (b): $VI \times Power$ factor
The true power or useful power is given by $VI \times Power$ factor whereas the wattless

component or reactive power is given by VI \times Sin Φ .

104 The cosine of angle between voltage vector and current vector is known as

(a)Power factor

- (b)Load factor
- (c)Form factor
- (d)Peak factor

Correct Answer (a): Power factor

The power factor is defined as the cosine of angle between voltage vector and current

vector.

105 The ratio of true power to the apparent power is known as

- (a)Power factor
- (b)Load factor
- (c)Form factor
- (d)Peak factor

Correct Answer (a): Power factor

Power factor = VI Cos Φ / VI

= Active power / Apparent power

AC Circuit MCQs: 106 to 110

106 The power factor is a ratio of

(a)R / Z

(b)X/Z $(c)R^2/Z$

(d)Y / Z

Correct Answer (a): R / Z

If R, X and Z are component of triangle where Z = impedance of circuit, X = reactance of

circuit and R = Resistance of circuit

 $\cos \Phi = R / Z$

107 The active power is better known as

- (a)Idle component
- (b)Wattless component
- (c)Wattful component
- (d)None of the above

Correct Answer (c): Wattful component

108 Which of the following component is responsible for power factor?

- (a)VI
- (b)VI Cos Φ
- (c)VI Sin Φ
- (d)VI tan Φ

Correct Answer (c): VI Sin Φ

The reactive power is responsible for power factor. If the reactive power increases, power

factor decreases and vice versa. E.g.

Let $\Phi = 0$ degree

- Active power = VI Cos 0 = VI
- Reactive power = VI Sin 0 = 0
- Let $\Phi = 45$ degree

Active power = VI Cos 45 = VI / $\sqrt{2}$

- Reactive power = VI Sin 45 = VI / $\sqrt{2}$
- Let $\Phi = 90$ degree

Active power = VI $\cos 90 = 0$

Reactive power = VI Sin 45 = 1

From the above, as the reactive power increases, active power increases or power factor

decreases considering product of VI remains constant.

109 The reactive power is better known as

- (a)VI
- (b)VI Cos Φ
- (c)VI Sin Φ
- (d)kVA

Correct Answer (c): VI Sin Φ

110 The product of the RMS voltage and RMS current is known as

- (a)Reactive power
- (b)Active power
- (c)Apparent power
- (d)Real power
- Correct Answer (c): Apparent power
- Active power = VI $\cos \Phi$
- Reactive power = VI Sin Φ

Apparent power = $\sqrt{(\text{active power})^2 + (\text{Reactive power})^2} = \text{VI}$

AC Circuit MCQs: 111 to 115

111 The power developed in the inductive reactance of the series R - L circuit is

known as

- (a)Apparent power
- (b)Active power
- (c)Reactive power
- (d)DC power

Correct Answer (c): Reactive power

112 The power dissipated in the series R - L circuit is better known as

(a)Active power

- (b)Reactive power
- (c)Apparent power
- (d)Idle power

Correct Answer (a): Active power

113 The reciprocal of the power factor is

- (a)Load factor
- (b)Real factor
- (c)P-factor
- (d)Q factor

Correct Answer (d): Q factor

Power factor $\cos \Phi = R/Z$

Reciprocal of power factor is known as quality factor Q = Z/R

114 The Q factor of the series R - L circuit is

- $(a)X_L/R$
- (b)Z/R
- (c)1 / R
- (d)L / R

Correct Answer (b): Z / R

The impedance of series RL circuit $Z = R + j X_L$

Q factor of series RL / RC circuit is always Z/R

115 The current vector leads voltage vector in the series

- (a)R L circuit
- (b)L-C circuit
- (c)R-C circuit
- (d)R-L-C circuit

Correct Answer (c): R - C circuit

The current leads voltage vector in the series RC circuit whereas it legs in the series RL

circuit.

AC Circuit MCQs: 116 to 120

116 The power factor of the series R - C circuit is

- (a)Unity
- (b)Lagging
- (c)Leading
- (d)Zero

Correct Answer (c): Leading

Due to capacitance of the circuit, power factor is leading

117 The power factor of the series R - L - C circuit is

- (a)Unity
- (b)Lagging
- (c)Leading
- (d)Any of the above

Correct Answer (d): Any of the above

Two parameter affects the power factor of series RLC circuit: X_L and X_C

Inductive reactance $= X_L$

Capacitive reactance =
$$X_C$$

If

 $X_L > X_C =$ Inductive circuit, lagging power factor

 $X_L < X_C =$ Capacitive circuit, leading power factor

 $X_L = X_C =$ Resistive circuit, Unity, leading power factor

118 The net reactance of the series R - L - C circuit is

(a)R

- $(b)X_L + X_C$
- $(c)X_{L}X_{C}$
- $(d)X_L X_C$

Correct Answer (c): $X_L\,{\scriptstyle{\sim}}\,X_C$

Net reactance of series RLC circuit is $X_L \sim X_C$

 $X_L > X_C$ = Inductive circuit, lagging power factor

 $X_L < X_C =$ Capacitive circuit, leading power factor

119 The current leads voltage in the series R - L - C circuit when

- $(a)X_{L} = X_{C}$
- (b)X_L>X_C
- (c)X_C>X_L
- (d)R = 0

Correct Answer (c): $X_C > X_L$

Current leads voltage vector means capacitive circuit so $X_C > X_L$

If current legs voltage vector, inductive circuit so X_L>X_C

120 The voltage leads current in the series R - L - C circuit when

(a)Z = 0

 $(b)X_L = X_C$

 $(c)X_{C}>X_{L}$

 $(d)X_L>X_C$

Correct Answer (d): $X_L > X_C$

Voltage leads current, it means that current lagging therefore it is inductive circuit. In the

inductive circuit, $X_L > X_C$

AC Circuit MCQs PDF

Download AC Circuit MCQs PDF